Sign language recognition and translation: a multidisciplined approach from the field of artificial intelligence.
نویسنده
چکیده
In recent years, research has progressed steadily in regard to the use of computers to recognize and render sign language. This paper reviews significant projects in the field beginning with finger-spelling hands such as "Ralph" (robotics), CyberGloves (virtual reality sensors to capture isolated and continuous signs), camera-based projects such as the CopyCat interactive American Sign Language game (computer vision), and sign recognition software (Hidden Markov Modeling and neural network systems). Avatars such as "Tessa" (Text and Sign Support Assistant; three-dimensional imaging) and spoken language to sign language translation systems such as Poland's project entitled "THETOS" (Text into Sign Language Automatic Translator, which operates in Polish; natural language processing) are addressed. The application of this research to education is also explored. The "ICICLE" (Interactive Computer Identification and Correction of Language Errors) project, for example, uses intelligent computer-aided instruction to build a tutorial system for deaf or hard-of-hearing children that analyzes their English writing and makes tailored lessons and recommendations. Finally, the article considers synthesized sign, which is being added to educational material and has the potential to be developed by students themselves.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملتوانش های شناخت، نظریه ذهن و حافظه دیداری در کودکان کم شنوا
Hearing problems in children hard of hearing, in addition to communication skills, will effect social interaction too. One aspect of social recognition which has attracted an increasing attention in recent years is the development of children's intelligence theory. In connection with intellectual and recognition abilities in children hard of hearing, intelligence is a subject that has always be...
متن کاملEnglish-Persian Plagiarism Detection based on a Semantic Approach
Plagiarism which is defined as “the wrongful appropriation of other writers’ or authors’ works and ideas without citing or informing them” poses a major challenge to knowledge spread publication. Plagiarism has been placed in four categories of direct, paraphrasing (rewriting), translation, and combinatory. This paper addresses translational plagiarism which is sometimes referred to as cross-li...
متن کاملA Review on Indian Sign Language Recognition
Automatic Sign Language Recognition is an extensive research area in the field of human computer interaction. Such recognition systems are meant to replace sign language interpreters. With the development of image processing and artificial intelligence techniques, many techniques have been recently developed in this area. Most of the signs in Indian Sign Language (ISL) are double handed and hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of deaf studies and deaf education
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2006